Saturday, July 21, 2012

Natural Resource Extraction and the Roman Bazaar

This paper outlines how agent-based modeling can be used as a laboratory for exploring aspects of ancient economic life. Bang (2006; 2008) has put forth a model of the Roman economy developed from the insights of Clifford Geertz (1979) as an 'imperial bazaar'. A significant portion of Bang's model hinges on social networks. Particular network topologies have implications for the flows of materials or ideas through them, and so knowing the kind of network shapes that the 'bazaar' might generate should be explored. We can develop an agent based simulation of Bang's model which as a by-product of its functioning generates social networks. We can then look at under what conditions the generated social network matches social networks known archaeologically from the extractive economy of Roman brick and tile. The simulation thus represents a way of bridging economic theory with the archaeological evidence. Suggestions for extending the model to explore multiple kinds of products and adapting it are presented.



Agent based modeling; Roman economic history; simulation; trade, natural resources


This paper explores what the economist Lea Tesfatsion calls 'agent-based computational economics' (2012). It uses the Netlogo (Wilensky, 1999) agent based modeling platform to implement a (necessarily) simplified Roman economy. The model generates social networks which can then be measured against known archaeological networks; where there is a degree of congruence, I argue that the model has generated new knowledge. In this regard, what I am building is a 'computational laboratory' that takes place in an explicitly spatial environment (Dibble, 2006). In the spirit of open access, I make the model and its code available for experimentation and extension and so the results presented here should be seen as necessarily preliminary.